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Abstract

Questions: Can we improve understanding of vegetation response to water

availability on monthly time scales in semi-arid environments using remote

sensing methods?What climatic or water balance variables and antecedent win-

dows of time associated with these variables best relate to the condition of vege-

tation? Can we develop credible near-term forecasts from climate data that can

be used to prepare for future climate change effects on vegetation?

Location: Semi-arid grasslands in Capitol Reef National Park, Utah, USA.

Methods: We built vegetation response models by relating the normalized dif-

ference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013
to antecedent climate and water balance variables preceding the monthly NDVI

observations. We compared how climate and water balance variables explained

vegetation greenness and then used a multi-model ensemble of climate and

water balancemodels to forecast monthly NDVI for three holdout years.

Results: Water balance variables explained vegetation greenness to a greater

degree than climate variables for most growing season months. Seasonally

important variables included measures of antecedent water input and storage in

spring, switching to indicators of drought, input or use in summer, followed by

antecedent moisture availability in autumn. In spite of similar climates, there

was evidence the grazed grassland showed a response to drying conditions 1 mo

sooner than the ungrazed grassland. Lead times were generally short early in

the growing season and antecedent window durations increased from 3 mo

early in the growing season to 1 yr or more as the growing season progressed.

Forecast accuracy for three holdout years using a multi-model ensemble of cli-

mate and water balance variables outperformed forecasts made with a na€ıve

NDVI climatology.

Conclusions: We determined the influence of climate and water balance on

vegetation at a fine temporal scale, which presents an opportunity to forecast

vegetation response with short lead times. This understanding was obtained

through high-frequency vegetation monitoring using remote sensing, which

reduces the costs and time necessary for field measurements and can lead to

more rapid detection of vegetation changes that could help managers take

appropriate actions.

Introduction

Semi-arid ecosystems are especially susceptible to climate

and land-use impacts and require careful management to

avoid irreversible changes in vegetation composition and

associated water, energy and nutrient cycles (Briske et al.

2006). In the southwestern US, semi-arid regions are pro-

jected to be hotter and drier (Seager et al. 2007), which

will affect vegetation composition and condition across

broad geographic extents. These impacts to vegetation will

add considerable stress to ecological systems, even in pro-

tected areas where land-use stressors are minimized (Cook

et al. 2015). Changes in vegetation composition and con-

dition affect biodiversity and economic services derived

from forage production in these landscapes (Miller et al.

2011; Ault et al. 2014; Briske et al. 2015). When biotic
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(e.g. herbivory) and abiotic (e.g. climate) conditions

exceed plant physiological tolerances or response capaci-

ties, thresholds can be crossed that result in new, often

undesirable ecological states. High frequency vegetation

monitoring over broad areas can improve our ability to

track abrupt and gradual vegetation responses to climate

and land use, and provide managers with an early warning

of approaching thresholds. Although not frequently imple-

mented, this type of monitoring would ideally be used to

generate forecasts of the near-term condition of vegetation

at management-relevant time scales (Clark et al. 2008).

Anticipating geographically specific vegetation changes

can help managers mitigate stressors and plan restoration

activities that provide more time for adaptation strategies

to work (Briske et al. 2015).

Traditional plot-based range monitoring techniques

can be effective for understanding how climate and live-

stock grazing influence vegetation (Munson et al. 2016).

However, diverse landscapes and infrequent ground-

based measurements often preclude tracking the dynamic

fluctuations of vegetation that occur on seasonal or

monthly time scales, which can result in a ‘wait and see’

management paradigm. Unfortunate outcomes from this

approach can be lost opportunity to mitigate unwanted

shifts in vegetation and irreversible environmental dam-

age (Alhamad et al. 2007). Vegetation is water-limited in

semi-arid environments, and understanding vegetation

response to climate is complicated by time lags after

weather events and the duration of antecedent condi-

tions such as sustained drought or periods of wetness

that affect the timing and magnitude of plant growth in

the current and following years (Richard & Poccard

1998; Fabricante et al. 2009; Richard et al. 2012). In

semi-arid environments, cycles in vegetation productivity

have been linked to precipitation legacies from previous

years and pulse-reserve responses that describe accrual of

biological capital (leaves, roots, seeds) in wet years that

set the stage for response in following years (Reynolds

et al. 2004; Sala et al. 2012). Such lag and memory

effects need explicit consideration in long-range planning

and management of semi-arid lands (Milchunas et al.

1994).

Grazing is a common land use in semi-arid regions and

interacts with climate to affect vegetation biomass and

composition. Vegetation response to climate and grazing

may vary by precipitation regime, functional type (e.g.

grass vs shrub), soil type and the intensity and duration of

grazing (Milchunas et al. 1994; Todd et al. 1998; Robinson

et al. 2012). From a management perspective, complex

interactions among these factors demonstrate the need for

broad-scale monitoring techniques that account for varia-

tion in these factors, which are difficult to encompass with

plot-based studies.

Remote sensing offers high-frequency and broad-scale

observations that can improve understanding of vegetation

response to environmental conditions with high spa-

tiotemporal variation (Fuller & Prince 1996; Moreno-de las

Heras et al. 2015). Yet numerous challenges exist for

remote sensing of vegetation condition in semi-arid land-

scapes. These obstacles include noisy observations, rela-

tively weak signals, low vegetation cover with bright soil

backgrounds, high inter-annual variability in vegetation

greenness, lagged vegetation response to climate, and little

to no vegetation green-up in drought years (de Beurs &

Henebry 2010). Despite these challenges, remote sensing

has potential to help fill important spatial and temporal

gaps in semi-arid vegetation monitoring programmes.

When coupled with ground-based observations that

describe plant species assemblage and land use in the

remote sensing footprint, more nuanced interpretations of

vegetation relationships with climate are possible than

when using remote sensing methods alone (Moreno-de las

Heras et al. 2015). These interpretations have value for

informing management decisions that may benefit by flex-

ibly responding to current and near-term forage conditions

(Alhamad et al. 2007).

Satellite-derived proxies for vegetation condition, such

as the normalized difference vegetation index (NDVI),

have been used to study climate and grazing effects on veg-

etation in semi-arid environments for several decades

(Fuller & Prince 1996; Paruelo & Lauenroth 1998; Todd

et al. 1998; Moreno-de las Heras et al. 2015). However,

few studies investigated themultivariate suite of water bal-

ance factors and their antecedent conditions in semi-arid

environments that, on a monthly basis, may be more clo-

sely related to vegetation response than climate factors

(Fuller & Prince 1996; Alhamad et al. 2007; Huber et al.

2011; Campo-Besc�os et al. 2013). Water balance metrics

may be more directly related to plant physiological

response at monthly time scales than precipitation alone

because water balance estimates temporal aspects of both

stored soil moisture (SM) and water deficit that regulate

plant growth (Rosenzweig 1968; Stephenson 1998) in

semi-arid environments. Accounting for SM storage

becomes increasingly important in water-limited environ-

ments because it helps maintain plant productivity

through dry seasons and years (Bisigato et al. 2013;

Campo-Besc�os et al. 2013).

The primary objectives of this research were to: (1)

determine the timing of antecedent climate or water bal-

ance predictors of monthly NDVI in proximal ungrazed

and grazed semi-arid grasslands; (2) identify differences in

response to antecedent conditions that may be related to

grazing history and vegetation composition; and (3) evalu-

ate accuracy of near-term forecasts of monthly NDVI for

management planning.
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Methods

Study area

Capitol Reef National Park is situated in the Colorado Pla-

teau physiographic province in south-central Utah, USA

(Fig. 1). This semi-arid park has a mean annual precipita-

tion (P) of approximately 240 mm, which is composed of

cool season (October–March) frontal precipitation (52% of

annual P) and warm season (July–September) convective

P (30% of annual P) (Table 1; Hereford et al. 2002). We

focus on two perennial grassland management units that

each consist of the same three ecological sites; Semi-desert

Alkali Sandy Loam, Semi-desert Sand and Semi-desert

Sandy Loam (U. S. Department of Agriculture, Natural

Resources Conservation Service. 2004; Draft of Soil Survey

of Capitol Reef National Park: Parts of Kane and Garfield

Counties. Salt Lake City, UT). Grouping ecological sites by

management unit also increased the pixel sample size, cre-

ating a more favourable signal-to-noise ratio for observa-

tions in semi-arid environments (de Beurs & Henebry

2010). Both grasslands were grazed with livestock, begin-

ning in the early 1900s, but one has not been grazed since

2000 (ungrazed Cathedral grassland: 7.3 km2; Fig. 1),

while the other is actively grazed October through May

(grazed Hartnet grassland: 7.2 km2). These two grasslands

are part of a long-term monitoring programme that began

in 2008, aimed at understanding historical grazing and cli-

mate effects on semi-arid vegetation, and they share simi-

lar physical conditions because of their close proximity

(Witwicki 2013). Both grasslands have deep (>150 cm)

soils on relatively level depositional surfaces that accumu-

lated sandy and gravelly sediments from surrounding

Fig. 1. The grazed and ungrazed grasslands in the northern region of Capitol Reef National Park, US. Dots represent locations of permanent vegetation

plots used to characterize species composition and cover.
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uplands. The grasslands were similar with respect to water-

holding capacity in the top 1 m of soil (grazed = 99 mm;

ungrazed = 90 mm), which we calculated as a spatially

weighted average from the ecological site components

(Soil Survey Staff, Natural Resources Conservation Ser-

vice, United States Department of Agriculture; Web Soil

Survey available at http://websoilsurvey.nrcs.usda.gov/

Accessed 24May 2013).

Vegetation and environmental measurements

Vegetation

Randomly located permanent vegetation plots (22 grazed

and 26 ungrazed) were sampled once annually in May or

Jun from 2008 to 2013 (Fig. 1). Vegetation plots consisted

of three parallel, 50-m transects spaced 25 m apart. A

point-intercept method was used to record cover of plant

species at any height in the canopy at 0.5-m intervals along

each transect. We report species abundance as cover,

which is the count of points where each species was

detected at a plot divided by the sum of all points sampled

at a plot (Table 2). Since 2000 there have been no fires or

notable vegetation transitions according to park staff, but

there may have been gradual increases in C3 grass cover in

the ungrazed grassland after grazing ceased. Here we

account for grazing as themajor disturbance by contrasting

grazed and ungrazed grassland response.

Satellite imagery

A time-series of 16-d maximum value composite, 250-m

resolutionMODIS images (MOD13Q1; LPDAC 2011) from

2000 through 2013 were processed to remove low quality

pixel values that were caused by clouds, aerosols or snow

Table 1. Seasonal and annual average climate and water balance for the grasslands (2000–2013).

Grassland Period NDVI P (mm) T (°C) AET (mm) GDD (oC) D (mm) SM (mm)

Ungrazed Spring 0.146 (0.06) 58 (0.08) 9 (0.49) 97 (0.04) 491 (0.24) 52 (0.35) 35 (0.28)

Summer 0.166 (0.01) 58 (0.17) 21 (0.09) 80 (0.07) 1562 (0.04) 250 (0.04) 5 (0.85)

Autumn 0.169 (0.04) 79 (0.11) 10 (0.68) 62 (0.11) 575 (0.29) 75 (0.26) 10 (0.56)

Annual 0.157 (0.05) 251 (0.28) 10 (0.06) 247 (0.25) 2631 (0.06) 383 (0.19) 15 (0.64)

Grazed Spring 0.134 (0.06) 51 (0.08) 9 (0.49) 86 (0.04) 510 (0.24) 66 (0.35) 28 (0.28)

Summer 0.147 (0.01) 56 (0.17) 22 (0.09) 74 (0.07) 1585 (0.04) 261 (0.04) 4 (0.85)

Autumn 0.137 (0.04) 75 (0.11) 10 (0.68) 58 (0.11) 589 (0.29) 80 (0.26) 10 (0.56)

Annual 0.136 (0.07) 230 (0.3) 10 (0.06) 226 (0.27) 2687 (0.06) 416 (0.18) 13 (0.71)

Values in parentheses are coefficients of variation. Spring months are March–May; summer months are June–August; autumn months are September–

November. Annual values include winter months December–February. NDVI is the normalized difference vegetation index; P is precipitation; T is tempera-

ture, AET is modelled actual evapotranspiration; GDD is accumulated growing degree-days; D is water deficit; SM is soil moisture.

Table 2. Percentage cover of the sevenmost abundant live plant species at field plots monitored during growing seasons 2008–2013.

Scientific Name Common Name Functional Group Photosynthetic Path Grazer Palatability1 % Cover

Ungrazed Grassland Sporobolus airoides Alkali sacaton Perennial grass C4 Medium 3.9

Achnatherum hymenoides Indian ricegrass Perennial grass C3 High 2.6

Bouteloua gracilis Blue grama Perennial grass C4 High 1.6

Gutierrezia sarothrae Broom snakeweed Shrub Low 1.0

Muhlenbergia pungens Sandhill muhly Perennial grass C4 Low 0.8

Opuntia sp. Prickly pear (sp). Sub-shrub Low 0.8

Pleuraphis jamesii Galleta grass Perennial grass C4 High 0.8

Other 4.7

Total 16.1

Grazed Grassland Sporobolus airoides Alkali sacaton Perennial grass C4 Medium 1.9

Pleuraphis jamesii Galleta grass Perennial grass C4 High 1.4

Achnatherum hymenoides Indian ricegrass Perennial grass C3 High 1.4

Krascheninnikovia lanata Winterfat Shrub High 0.9

Gutierrezia sarothrae Broom snakeweed Shrub Low 0.8

Atriplex confertifolia Shadscale Shrub High 0.7

Bouteloua gracilis Blue grama Perennial grass C4 High 0.4

Other 2.8

Total 10.3

1USDA NRCS PLANTS database. http://plants.usda.gov/about_plants.html [Accessed 7 Jul 2014].
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cover. The NDVI was calculated from visible and near

infrared reflectance as,

NDVI ¼ ðqNIR� qRÞ
ðqNIRþ qRÞ ; ð1Þ

where qNIR is reflectance in near infrared band (0.841–
0.876 lm) and qR is reflectance in the red band (0.620–
0.670 lm) (Solano et al. 2010). Pixels within each grass-

land (n = 157 ungrazed; n = 138 grazed) were spatially

averaged at each time step to create a 16-d time series of

NDVI from 2000 through 2013 for each grassland. Missing

values in the 16-d time series only occurred in December

through February due to clouds or snow and were linearly

interpolated before smoothing (Verbesselt et al. 2009). We

used Timesat software to implement a three period Savit-

sky-Golay moving window filter to smooth high-fre-

quency noise that remained in the time series (Jonsson &

Eklundh 2004; Moreno-de las Heras et al. 2015). The

interpolation to monthly time step at the end of each

month was performed using a three period moving win-

dow linear regression on 16-d NDVI values. The smoothing

and interpolation procedures preserved the timing and

magnitude of NDVI variation while minimizing noise that

was not likely related to vegetation phenology (Jonsson &

Eklundh 2004; Verbesselt et al. 2009; Fig. 2).

In order to evaluate annual relationships between NDVI

as a surrogate for annual net primary productivity (ANPP),

we calculated the integrated annual NDVI (iNDVI). Since

NDVI includes a component of reflectance from bare soil in

minimally vegetated areas, we minimized the soil contri-

bution to NDVI by subtracting the minimum growing sea-

son NDVI for each grassland (ungrazed = 0.11;

grazed = 0.10) from each monthly NDVI value before cal-

culating iNDVI (as per Moreno-de las Heras et al. 2015):

iNDVIy ¼
Xm¼Oct

m¼Apr

NDVIm � NDVIminð Þ; ð2Þ

where, NDVIm is monthly NDVI from April through Octo-

ber and NDVImin is the minimum NDVI value for the

2000–2013 period.

Climate and water balance

Daily precipitation (P) and temperature (mean [Tmean],

minimum [Tmin] and maximum [Tmax]) data for the grass-

lands were obtained from Daymet interpolated 1-km cli-

mate grids (Thornton et al. 1997; Daymet: Daily surface

weather on a 1-km grid for North America, 1980–2013,
http://daymet.ornl.gov/, accessed 29 Apr 2014). We con-

structed time series of these climate variables from single
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Fig. 2. Seasonal and inter-annual variation in NDVI in (a) ungrazed grassland and (b) grazed grassland in Capitol Reef National Park, US. Lines represent the

effects of gap-filling and interpolating 16-d NDVI to monthly time step that matched temporal resolution of monthly water balance. Gaps in 16-d time series

were due to screening of low quality pixel values. The NDVI response in the two grasslands is strongly correlated (r2 = 0.48).
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pixels within our study areas because our water balance

model was point-based and in practice managers often rely

on climate data from individual stations tomake inferences

about vegetation condition.

Growing degree-days (GDD) is the daily sum of heat

accumulation for the month (°C), which is related to phe-

nological development (Wang et al. 2003). We calculated

GDD as described byMcmaster &Wilhelm (1997),

GDD ¼ Tmax þ Tmin

2

� �� �
� Tbase; ð3Þ

where Tbase = 4.44 °C, the temperature below which grass

physiological activity ceases (Wang 1960).

We used mean monthly temperature and monthly

precipitation as inputs to a Thornthwaite-type monthly

water balance model to estimate water input to the

soil, SM storage and loss of water via evapotranspira-

tion (Dingman 2002). The monthly water balance

equations were identical to Lutz et al. (2010) with one

exception. In our model we calculated the water bal-

ance for each year separately and carried December

SM over to the following Jan to account for soil as a

capacitor of moisture as suggested by Bisigato et al.

(2013).

Soil moisture is the quantity of water stored in the

soil at the end of each month (mm). Potential evapo-

transpiration (PET) is the amount of water that could

be evapotranspired with available energy if water avail-

ability was unlimited to a short grass. Actual evapotran-

spiration (AET) is the monthly upward loss of water

from soil via transpiration and evaporation, which is

limited by SM availability. Deficit (D), a positive value

measure of drought stress, is the amount of additional

water vegetation would use if it were available, calcu-

lated as the difference between monthly PET and AET

(Stephenson 1998).

Data reduction

The NDVI, water balance and climate data were aggre-

gated or interpolated to create monthly data sets of all

variables. Relying on previous studies, we chose a set of

candidate predictors of NDVI that affect vegetation growth

in semi-arid regions (Huber et al. 2011; Campo-Besc�os

et al. 2013): (1) precipitation (P); (2) precipitation and

temperature additive interaction (P_T); (3) growing

degree days (GDD); (4) SM; (5) AET; and (6) water deficit

(D). We then calculated antecedent conditions prior to

each NDVI observation according to Wang et al. (2003) by

summarizing climate and water balance values backward

in a step-wise monthly fashion up to 2 yrs prior to each

NDVI observation,

CðmÞ ¼
Xm
j¼0

Cj; for variablesP;AET; D and GDD; ð4Þ

and

CðmÞ ¼
Pm

j¼0 Cj

m
for variables SM andT ; ð5Þ

where Cj is the climate or water balance term used to

model NDVI for month j,m is months prior to NDVI obser-

vation. In the case when m = 0 the climate or water bal-

ance term is the value for the month concurrent with the

NDVI observation. In the case where m = 24, the climate

or water balance term is the sum (eqn 4) or average

(eqn 5) of monthly values backward in time for 2 yrs prior

to the NDVI observation. The magnitude of m represents

the duration of accumulation for climate or water balance

terms used in models of NDVI response. The SM predictor

was computed as an average because it has an upper limit

based on physical properties that affect soil water-holding

capacity. Temperature was considered cumulatively as

GDD and as an average for its interaction with precipita-

tion.

Analysis

Since vegetation response lags behind weather, or alterna-

tively weather leads vegetation response, we included pre-

dictor lead times up to 5 mo (including zero lead) in our

analysis (Wang et al. 2003). Duration zero and lead zero

represent climate or water balance conditions in the

month concurrent with NDVI observation, whereas dura-

tion one represents the sum of current and previous

month and lead one indicates conditions 1 mo prior to the

NDVI observation. We used simple linear regression in R

(R Foundation for Statistical Computing, Vienna, AT)

NDVIj ¼ b̂0;j þ b̂1;jCðmÞ;l þ ei ð6Þ

where C(m),l is the climate or water balance variable accu-

mulated across m months prior to the NDVI observation

via eqns 4 and 5 where m = 0,. . .,24, leading NDVI by l

months where l = 0,. . .,4, and b̂0;j is an estimated parame-

ter for month j, we use j to denote separate monthly NDVI

models where j = 1,. . .,12, ei is the residual error term for a

yearly observation in month j (where i = 2000,. . .,2010)

assumed to be independent and normally distributed. For

example, we built a cross-year June NDVI response model

by regressing June NDVI values (one from each year;

n = 11) on climate data representing different durations

and leads preceding each annual June NDVI value.
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We tested for autocorrelation in yearly residuals using

the Durbin Watson test statistic (R package car; Fox &

Weisberg 2011) and visual inspection of autocorrelation

functions for each predictor by month. We found no

strong evidence of autocorrelation within model residu-

als. The number of monthly models for each month,

called the model set (five leads, 25 durations and six pre-

dictors = 750) is greater than the monthly model cross-

year response (n = 11). As such, we evaluated monthly

model sets using an information theoretic approach to

identify a plausible set of predictors, durations and lead

times that may be useful indicators of NDVI response for

each month. We used Akaike’s information criterion

adjusted for small sample size (AICc) as a measure of

model fit, and the ΔAICc as a means of model compar-

ison within each monthly model set. The AICc for each

model was calculated as,

AICc ¼ n logðr̂2Þ þ 2K þ 2KðK þ 1Þ
n� K � 1

; ð7Þ

where nwas sample size, r̂2 is model variance andK is total

number of estimated regression parameters, including the

intercept and r̂2.
The ΔAICc for eachmodel was,

DAICc ¼ AICi � AICmin; ð8Þ

where AICi is AICc for model i and AICmin is the minimum

AICc value for all models in the monthly model pool. We

consider monthly models with ΔAICc < 4 as having sup-

port by the data and are thus competitive candidatemodels

(Burnham&Anderson 2002).

The information theoretic approach helps identify a

pool of plausible monthly models, but does not eliminate

the possibility of selecting spurious models by chance,

and it can be difficult to interpret when there are many

competitive models. We used k-fold validation as a tool

to assess the reliability of our near-term forecasts and

our inferences regarding climatic and water balance vari-

ables as related to monthly NDVI (Maindonald & Braun

2007). We performed 100 iterations of the analysis,

which involved randomly selecting three holdout years

of NDVI climate and water balance, building and select-

ing competitive models with 11 yrs of data, and then

making forecasts of monthly NDVI for the holdout years

(described in the next section). Using these iterations,

we identified the frequency of predictor variable occur-

rence as well as the most frequently occurring leads and

durations by month. We computed the average NDVI

forecast accuracy across all 100 iterations and then

selected one of the iterations that had forecast accuracy

similar to the 100 iteration average to conservatively

demonstrate forecast accuracy. The iterations demon-

strate robustness to selection of holdout years and com-

petitive models and a more accurate estimate of forecast

performance. Using the representative forecast group of

3 yrs, we use heat maps to demonstrate competitive pre-

dictors and their associated antecedent windows that

were most influential in determining monthly NDVI

response by grassland.

Forecasts

In our k-fold validation we evaluated two forecasting

methods (Yu et al. 2015). The first was a multi-model

average of the most competitive climate/water balance

predictors. Multi-model average forecasts for each month

were calculated as,

�̂h ¼
XR
i¼1

wiĥi; ð9Þ

where �̂h is the multi-model estimate of NDVI for a given

month in a holdout year, R is the number of competitive

monthly models and wi are Akaike weights which sum to

1 and are calculated as,

wi ¼ exp �ð1=2ÞDAICcið ÞPR
r¼1 exp �ð1=2ÞDAICcrð Þ ; ð10Þ

where DAICci is the ΔAICc for each of the competitive

monthly models.

The second forecast method was a na€ıve forecast cal-

culated using a ‘NDVI climatology’ that was the monthly

average NDVI from years in each iteration of the model

building set. If our climate/water balance multi-model

average forecast performs better than an average

monthly NDVI forecast, we confirm that antecedent cli-

mate and water balance help explain NDVI. We evalu-

ated the performance of both forecast methods using

root mean square error (RMSE) as an indicator of fit

between observed and modelled NDVI (Wang et al.

2007).

Results

Vegetation composition

The plant species with the highest cover in the grazed

grassland were Sporobolus airoides (alkali sacaton) a C4

grass; Pleuraphis jamesii (galleta grass), a C4 grass; Ach-

natherum hymenoides (Indian ricegrass), a C3 grass. In the

ungrazed grassland, S. airoides (alkali sacaton), A. hy-

menoides (Indian rice grass) and Bouteloua gracilis (blue

grama), a C4 grass, had the highest cover (Table 2). Species
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richness was 7.5 and 10.5 species�plot�1 in the grazed and

ungrazed grassland, respectively.

The NDVI satellite Imagery

There was high inter- and intra-annual variability in NDVI

(Fig. 2) that exhibited a strong correlation between the

grasslands (r2 = 0.48). However, the generalized seasonal

pattern in both grasslands was green-up in March through

May, peak greenness between June and September, fol-

lowed by gradual decline as vegetation senesced in

September through November (Fig. 2, Appendix S1). In

some years monthly NDVI had a second peak between

Aug and October (2001, 2007 and 2010). During the study

period, NDVI annual average in the grazed grassland was

0.136 (cv = 0.072), which was less than (P < 0.0001) the

ungrazed grassland NDVI annual average of 0.157

(cv = 0.051; Table 1).

Climate andwater balance

Seasonal patterns in median climate and water balance

were apparent in spite of high inter-annual variability

(Table 1, Appendix S1). Recharge of SM occurred Octo-

ber through March during vegetation senescence and

dormancy (Appendix S1; December, January, February

not shown). Stored moisture was utilized to near deple-

tion by September, however convective monsoon storms

in July through October provided moisture pulses in

most years (Table 1, Appendix S1; Notaro et al. 2010;

Forzieri et al. 2011). May and June were the driest

months with an average P of 8 to 14 mm month-1. Vari-

ation in annual AET was similar to annual variation in

P, as 98% of P was returned to the atmosphere via AET

(Table 1).

Precipitation legacy effects on NDVI

Multi-year P legacies were apparent in both grasslands. In

the ungrazed grassland, years 2005 and 2011 had the high-

est annual iNDVI and were preceded by years with the

highest annual P (Fig. 3). On the other hand, three consec-

utive years of below-average P from 2007 through 2009

resulted in the lowest iNDVI in 2009 (71% of average),

which was followed by the year of highest annual P in

2010 that only brought productivity back up to average

(101%). It took another year of above average P in 2011 to

raise productivity to the maximum observed in the study

at 119% of average in 2011. Similar patterns were

observed in the grazed grassland, but after the below-aver-

age 2007–2009 P years, the 2011 iNDVI response (104%)

was not as strong.

Patterns in competitivemonthlymodel iterations

Based on holdout iterations, competitive monthly models

included SM most frequently (61.3%), followed by D

(14.6%), P_T (10.2%), P (7.7%), AET (3.7%) and GDD

(2.5%). Seasonally, vegetation response models for both

grasslands indicate antecedent water input and storage

were the best predictors in the early growing season (P,

P_T, SM), switching to indicators of drought, input or use

in the mid-season (D, P, AET), followed by antecedent

moisture availability (SM) late in the growing season

(Fig. 4a, Appendix S2).

The most frequent lead times in vegetation response

models were zero to 2 mo from March through July

(Fig. 4b). However, in May and June, leads of 3 to

4 mo were important in the grazed grassland. Beginning

in August, both short leads and longer leads were com-

mon in models for the remainder of the growing sea-

son.

The window durations when predictors become impor-

tant in the ungrazed grassland generally increased from

<3 mo to 1 yr as the growing season progressed from

March through October. In the grazed grassland durations

increased from 3 to 18 mo as the season progressed from

May through October (Fig. 4c). Durations >12 mo span-

ning multiple growing seasons occurred in most monthly

response models for both grasslands. Dual peaks separated
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Fig. 4. Predictors and antecedent window timing in competitive models for 100 iterations of the model-building process. (a) Frequency of predictor
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by 12 mo suggest annual cycles in climate, water balance

and phenology are coupled (Fig. 4c August and June pan-

els, ungrazed).

Forecasts

The 3-yr multi-model climate/water balance forecasts for

100 iterations (grazed rmse = 0.009; ungrazed

rmse = 0.008) performed better on average than na€ıve

forecasts across the analysis iterations (grazed

rmse = 0.013; ungrazed rmse = 0.012; Appendix S2). We

demonstrate time series forecasts of monthly NDVI with

three holdout years (2001, 2005, 2010) that have forecast

accuracy similar to the average over 100 iterations of the

analysis process (Fig. 5).

Multi-model comparison

Using the representative holdout years 2001, 2005 and

2010, the predictors and antecedent conditions that were

deemed competitive and statistically similar (ΔAICc < 4)

by month and grassland are presented in heat maps for the

months representing early (May), middle (July) and end

(October) of the growing season (Fig. 6). In May, a

13-month average of SM preceding the May NDVI obser-

vation was the best model (r2 = 0.70) for the ungrazed

grassland (Fig. 6a, Appendix S1). In contrast, the best

model (r2 = 0.90) for the grazed grassland in May was P

with lead 3 and duration 4, which represents P summed

across November through February preceding the NDVI

observation (Fig. 6b, Appendix S1). Similar interpretations

can be made for summer months when AET and D are

important and in autumn months when P_T and SM are

important (Fig. 6c–f).
We note an important relationship between lead and

duration in the heat maps, where many of the competitive

monthly model leads and durations sum to a constant

value that point to a narrowly defined window of time

when climate or water balance were most important

(Fig. 6). For example, in October the grazed allotment best

model was SM with lead 0 and duration 8. Other competi-

tive models included duration 7, lead 1; duration 6, lead 2;

and duration 5 lead 3 (Fig. 6f). All of these lead and dura-

tion sums point to a window beginning in February where

increase in SM forward in time since February is correlated

with NDVI in October.

Discussion

Remote sensing

Many remote sensing studies have shown strong NDVI

response to precipitation in semi-arid environments on an

annual or seasonal basis (Paruelo & Lauenroth 1998;Wang

et al. 2003; Nagler et al. 2007; Fabricante et al. 2009;
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Fig. 5. Observed and multi-model forecast NDVI for holdout years 2001, 2005 and 2010 with 90% prediction intervals on monthly forecasts for (a)

ungrazed grassland, 3-yr rmse = 0.010 and (b) grazed grassland, rmse = 0.008.
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Jenerette et al. 2010; Huber et al. 2011; Moreno-de las

Heras et al. 2015). Fewer studies have investigated rela-

tionships at monthly or more frequent intervals (Szilagyi

et al. 1998; Philippon et al. 2005), and a very small num-

ber of studies have investigated multiple climate and water

balance factors, including switches between the most

important factors that can occur spatially or temporally

(Notaro et al. 2010; Campo-Besc�os et al. 2013). Although

under studied previously, determining the influence of

water availability on the condition of vegetation at high

spatial and temporal resolution is required for understand-

ing ecosystem processes and for effective management

practices. Our results demonstrate that high annual, sea-

sonal and monthly variations in NDVI in semi-arid envi-

ronments can be largely explained with climate and water

balance predictors and their associated antecedent win-

dows of time.

General patterns of NDVI response

Soil moisture, P, P_T and GDD (for ungrazed only)

occurred most frequently in competitive models of NDVI

response early in the growing season, consistent with find-

ings of Muldavin et al. (2008), who found grasslands with

C3 species respondedmost strongly towinter accumulation

of precipitation as SM and break from cold dormancy as

temperatures warm in spring. As SM reserves became

depleted into the summer months, competitive response

models included AET and D, which represent immediate

use or response to drought depending on the quantity of
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Fig. 6. Spring (top row), summer (middle row) and autumn (bottom row) heat maps of ΔAICc values <4 for predictors of NDVI and their antecedent

conditions for the two grasslands with holdout years 2001, 2005 and 2010. Text and red circle indicate top model with smallest AICc. Areas in maps with no

colour have ΔAICc > 4. Left panels ungrazed, right panels grazed.
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monsoon precipitation. Late in the growing season, SM

again occurred in competitive response models, which

indicates that SM largely determines vegetation greenness

at the end of the growing season. Interestingly, in months

when SM and D were the best predictors, durations were

generally long, which suggests that the storage of moisture

and accumulation of water deficits most affected plant

growth. This is consistent with the strong response of

herbaceous vegetation in the Chihuahuan Desert to mon-

soon plus winter precipitation noted by Moreno-de las

Heras et al. (2015) and Notaro et al. (2010). In contrast, in

months where P, AET and GDD were competitive predic-

tors, durations were generally short, which suggests that

pulses of water input and use during the late summer

monsoon season, and whether the temperatures are warm

enough to grow in spring, have immediate effects on plant

growth. Near-term response to monsoon precipitation in

semi-arid areas was also noted in all the above studies.

Inter-annual legacy effects noted in the inter-annual

iNDVI time series were apparent in the monthly competi-

tive models where durations centered on 12 mo were

common for both grasslands.

For both grasslands, we found 0 to 3 mo leads in vegeta-

tion response models March through July that shifted to

longer leads of 2 to 4 mo in August to November. The

longer leads indicate vegetation response in those months

was tied to conditions occurring earlier in the growing sea-

son, which suggested potential for forecasting end-of-sea-

son conditions several months in advance.

Seasonal switches

Water storage

In the grazed grassland, there was an early growing season

response to SM that started in March and ended in May,

which shifted to May and June in the ungrazed grassland.

The earlier switch in the grazed grassland from SM tomea-

sures of water use (AET) or drought (D) in May and June,

the two driest months, indicates the grazed grassland dried

earlier in the year, or its vegetation assemblage was more

sensitive to drier near-surface conditions and the ungrazed

grassland was sustained longer by SM. July was the only

month when SM was not found in competitive models for

both grasslands. However, by August SM was important

again, probably due to response ofmore deeply rooted veg-

etationwith access to deeper SM (Munson et al. 2011).

Although the grazed grassland soils have higher water-

holding capacity, the timing of switch in predictor variable

from water use or drought was likely because annual P is

21 mm less in the grazed grassland, about 9 mm of which

results from less winter P in the October through March

SM recharge period (Table 1). This finding highlights vege-

tation sensitivity in these grasslands to small spatial differ-

ences in P during the recharge period, and is evidence of

soil acting as a capacitor of moisture by storing winter pre-

cipitation for growth later (Bisigato et al. 2013).

Water need and immediate use

Whereas the average antecedent stored SM was important

early in the growing season, by July SM did not occur in

competitive models for either grassland. At this time other

measures of water availability and use became more

important predictors. Although not always the top predic-

tor, D was important June through September in the

grazed grassland and July through September in the

ungrazed grassland. The importance of D in June through

September models suggested that plant response in times

of minimal SM was affected by water need (D) as well as

availability (AET or P). Sensitivity to D rather than water

availability or use was consistent with a drought response

noted by Munson et al. (2013) and Vicente-Serrano et al.

(2013), who described the importance of drought duration

and severity on semi-arid vegetation. Response to P and

AET rather than SM at this time of year indicates some

monsoon precipitation was used immediately. Notaro

et al. (2010) described the same sequence and timing of

events across the entiremonsoon region of North America.

Monsoon NDVI response

The inter-annual variation in moisture availability late in

the growing season was reflected in a double or single peak

in the annual NDVI curves. This bimodal NDVI response is

ascribed to depletion of stored SM inMarch–May followed

by a pre-monsoon drought in June with renewed vegeta-

tion growth if monsoon precipitation occurs (Notaro et al.

2010). In July through October, a near-term NDVI

response to AET and P was found in both grasslands. This

time of year AET and P in response models represents

immediate use of P such that it does not add appreciably to

SM until October (Appendix S1). In October and Novem-

ber, SM averaged across the preceding growing season was

the most frequent predictor in response models for both

grasslands suggesting end of season NDVI response is pri-

marily due to sustained levels of growing season SM.

Functional NDVI response differences

The temporal correlation in NDVI for the two grasslands

suggests they respond similarly to climatic conditions, but

lack of perfect agreement also suggests different response

mechanisms. We found differences in vegetation composi-

tion and abundance that explain patterns in grassland phe-

nology (Epstein et al. 1999; Reynolds et al. 2004;

Fabricante et al. 2009; Moreno-de las Heras et al. 2015).

Applied Vegetation Science
424 Doi: 10.1111/avsc.12232 Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

Semi-arid vegetation response to water balance D.P. Thoma et al.



The higher productivity in the ungrazed grassland was

mostly due to higher annual precipitation, more vegeta-

tion cover and perhaps partially due to higher species rich-

ness that enables access to water in more temporal niches

and soil profile depths (Muldavin et al. 2008; Notaro et al.

2010; Moreno-de las Heras et al. 2015). In the grazed

grassland, there was less C3 grass cover, lower species rich-

ness and more unpalatable species, which is consistent

with the effects of grazing in this region (Fleischner 1994;

Rosenstock 1996; Harris et al. 2003) and which likely

influenced the NDVI responses to climate and water bal-

ance.

Although it was not the most frequent predictor, there

was evidence that GDD inMarch was correlated with April

vegetation greenness in the ungrazed grassland, a finding

supported by others where C3 species occur in grasslands

of the Chihuahuan Desert (Muldavin et al. 2008; Notaro

et al. 2010). This was consistent with higher cover of C3

‘cool season’ species in ground plots in the ungrazed grass-

land, and mostly C4 ‘warm season’ grasses in the grazed

grassland. Evidence of a more rapid green-up in the

ungrazed grassland was found in the higher rate of NDVI

change in April as cool season species responded to warm-

ing temperatures (Appendix S5). Similarly, the grazed

grassland maintained higher rates of growth in June–
September, which was consistent with the presence of C4

warm season species (Tieszen et al. 1997).

In the warm months April–August, we found near-

term pulse response relationships where short durations

and short leads were common. For example, GDD, P

and AET have a short duration as available energy initi-

ates growth and pulses of moisture and water use sus-

tain growth, a finding consistent with those of Muldavin

et al. (2008) and Notaro et al. (2010). Our early and

mid-season leads agreed with others who found 1 mo

lags in NDVI response and variable period length of

antecedent conditions that were strongly related to plant

functional type and phenological stage (Szilagyi et al.

1998; Ogle & Reynolds 2004; Reynolds et al. 2004;

Notaro et al. 2010; Moreno-de las Heras et al. 2015).

However, the response in our study units was as likely

to result from D as from P depending on availability of

incipient precipitation or strength of drought response.

On the other hand, spring and autumn season responses

were more commonly associated with longer durations

of SM and D because NDVI in those seasons is a product

of accumulated biomass affected by water availability

and water stress over longer periods. These results agree

with others who found that long durations of P accumu-

lated as SM were important for spring response in semi-

arid environments (Nagler et al. 2007; Jenerette et al.

2010) and as shown here for end of season response.

Precipitation legacies and pulse reserve

The pulse reserve concept describes how biological

reserves limit vegetation response in successive seasons

based on root, stem and seed biomass that respond to

growing conditions in following years (Lauenroth & Sala

1992; Reynolds et al. 2004). This concept explains the poor

relationships between annual above-ground net primary

productivity (ANPP) and annual P even when spatial pat-

terns of ANPP with P are very strong globally (Sala et al.

2012). We found a weak positive relationship between

iNDVI and annual precipitation (r2 = 0.24 ungrazed and

r2 = 0.05 grazed) that was much stronger when iNDVI

lagged annual P by 1 yr (r2 = 0.52 ungrazed and r2 = 0.41

grazed). Evidence of the pulse reserve concept was also

apparent in durations >1 yr. Productivity cycles, especially

of grasses, are partially dependent on biological reserves

from prior years and are important factors that can be

overlooked or under-appreciated unless careful accounting

of cumulative effects and frequent observations are part of

the monitoring and management strategy (Sala et al.

2012).

Dynamicmonitoring for dynamicmanagement

Consideration of flexible windows of relevant antecedent

conditions rather than focusing on precipitation average or

deviation from average can improve understanding of

semi-arid vegetation response (Easdale & Bruzzone 2015).

Attention to unique response windows of different plant

functional types is also important (Vicente-Serrano et al.

2013). Our study confirms these points and further

demonstrates that there can be seasonal switches in the

best climate and water balance variables and their corre-

sponding antecedent influence on different vegetation

assemblages (Reynolds et al. 2004; Robinson et al. 2012).

Others point out that seasonal precipitation is more impor-

tant than annual precipitation in its control on ANPP

(Robinson et al. 2012) and also note the important effect

of soil properties that facilitate storage and distribution to

deeper layers (Munson et al. 2011, 2013; Bisigato et al.

2013). Our emphasis on monthly aspects of water avail-

ability and vegetation response helped identify seasonality

in drivers (e.g. switches between moisture availability and

deficit), temporal windows of importance (e.g. SM

recharge over cool season) and inter-annual patterns that

result from precipitation legacies (pulse reserve relation-

ships). These findings confirm complex relationships

between climate, landscape physical factors, land use and

vegetation types, but importantly provide a means to inter-

pret these relationships in ways that can improve our

understanding and management of grasslands. Semi-arid
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landscapes are dynamic and our monitoring and manage-

ment actions should reflect variation in the spatial and

temporal state of vegetation.

Forecasts

Our multi-model forecasts allowed the predictor variables

and associated antecedent windows to vary by grassland

and month, relying more on high-ranked models that had

the most support in the data. The multi-model forecasts

performed better than a na€ıve NDVI climatology forecast,

which confirms that our models contain information per-

tinent to NDVI response. In the 100 iterations used to

make the forecast, accuracy was generally high in average

precipitation or dry years and was less accurate when

there were consecutive above average precipitation years.

This was likely due to complexities associated with pulse

reserve relationships that are challenging to our model

built with a 14-yr time series. Forecast accuracy was simi-

lar across 3 yrs for both grazed and ungrazed grasslands,

and the response models generally predicted higher NDVI

in the ungrazed grassland each year. Improvements in

forecasting could come from better accounting of pulse

reserve influences, stocking rates or forage utilization in

the grazed grassland, and employing a longer record of

measurements.

The significance of identifying different climate and

water balance windows to explain vegetation greenness is

that they all can provide sound predictions to informman-

agement. For instance, the grazed grassland in our study

was grazed from October to March. Predictive models of

vegetation greenness with up to 4 mo lead time could be

useful in planning stocking rates, which was also noted by

Fabricante et al. (2009). Our monthly vegetation response

models represent an improvement over interpretations

that could be made from sampling intervals that span sev-

eral years, during which both increases and decreases in

greenness may occur (Munson et al. 2011).

Conclusions

Vegetation response to climate and water balance on

monthly time scales is complex, but high frequency moni-

toring via remote sensing provides a means to determine

response across broad or remote areas where traditional

ground-based monitoring is not practical. If strong rela-

tionships can be developed at management scales, near-

term forecasts of vegetation condition are possible simply

from tracking weather and water balance. Building an

operational near-term forecasting system will require

development of site-specific relationships because the

response is governed by complex spatially varying factors

including land use, vegetation assemblage and local cli-

mate.

We found strong relationships between climate, water

balance factors and monthly NDVI that produced reason-

ably accurate monthly forecasts of NDVI for three holdout

years. Importantly, we identified vegetation response lags

up to several months that provide early warning or lead

time for potential management response. Our approach

relied on explicit consideration of vegetation composition

and land management, lagged vegetation response and

windows of time during which climate and water balance

influenced NDVI. This approach provides powerful insight

to potential climate-induced vegetation change that can

be monitored with remote sensing, a conclusion also

noted by Moreno-de las Heras et al. (2015). Our approach

relied on a probabilistic representation of explanatory

variable importance that did not require a priori knowl-

edge of ecosystem function, which is more complex and

elusive than generally acknowledged (Sala et al. 2012;

Robinson et al. 2012). This approach considers that a sin-

gle best model is unlikely to emerge and that multiple fac-

tors simultaneously play important roles in determining

vegetation condition (Burnham & Anderson 2002). Water

balance proved to be useful for assessing vegetation

response beyond climate alone in most months because it

incorporated estimates of water availability, use and

unmet vegetation need.

Knowing where in the pulse reserve cycle semi-arid

vegetation is currently and how vegetation may respond

to wet or dry conditions in upcoming seasons can provide

insight to potential response. This, in turn, may help with

decisions regarding stocking rates or help with planning

for restoration activities that should be timed during opti-

mal growing conditions. Better understanding of drought

effects, including local resistance and resilience to water

deficits, are important considerations for management

(Vicente-Serrano et al. 2013). Our findings contribute to

the suite of information managers can use for near-term

actions that set the course to achieve long-term manage-

ment goals.
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